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A STUDY OF HYPERSONIC SMALL-DISTURBANCE THEORY !

By Mimron D. VAN DykE

SUMMARY

A systematic study is made of the approzimate inviscid
theory of thin bodies moving at such high supersonic speeds that
nonlinearity is an essential feature of the equations of floi.
The first-order small-disturbance equations are derived for three-
dimensional motions involving shock waves, and estimates are
obtained for the order of error involved in the approzimation.
The hypersonic similarity rule of Tsien and Hayes, and
Hayes’ unsteady analogy appear in the course of the develop-
ment,

It 1s shown that the hypersonic theory can be interpreted so
that it applies also in the range of linearized supersonic flow
theory. Hence, a single small-disturbance theory, and as-
sociated similarity rule, apply at all supersonic speeds above
the transonic zone.

Several examples are solved according to the small-disturbance
theory, and compared with the full solutions when available.
These include flow past a wedge and cone, and determination of
the initial gradients at the tip of plane and axially symmetric
ogives. Ior the axially symmetric ogive it is shown that further
terms can be found only by using Lighthill's technique of render-
ing solutions uniformly valid, and thus the initial curvature of
the pressure distribution 18 calculated. It is concluded that on
a body of revolution described by a power series, the pressure
distribution and shock wave are also given by power geries.

A brief discussion is given of various additional approxima-
tions from existing theories.

INTRODUCTION

Aerodynamic shapes are ordinarily most efficient when
they cause the least flow disturbance. For this reason,
simplified theories based upon the assumption of small dis-
turbances due to thin bodies have proved to be of practical
value in analyzing incompressible, subsonic, transonic, and
supersonic flows.? For flows at Mach numbers large com-
pared with unity, however, the pressure disturbances may
no longer be small (compared with the static pressure)
aven for thin shapes, so that in this sense it has been said
that no 8mall-disturbance theory exists (ref. 1). However,
if VlSCOSIty can be neglected, the velocity dJsturba.nces
remain small compared with the speed of flight (though not
compared with the speed of sound), and even the pressure
changes are small if compared with the dynamic pressure.
In this sense, therefore, a small-disturbance theory exists,

1 Bupersedes NACA TN 3173, “A Study of Hypersonlc Small-Disturbance Theory” by
Mflton D, Van Dyke, 1854,

2 Throughout, “thin’ 13 used to refer to any body whose streamwise slope 18 small, and
g0 applies to slender fusiform objects as well as flat shapes such as afrfolls,

and the assumption of such small disturbances leads to a
useful simplification of the equations for compressible flow
at arbitrarily high Mach numbers.

Viscosity and heat conduction must be neglected in order
to have a small-disturbance theory. Otherwise, for example,
the viscous no-slip condition would introduce velocity dis-
turbances equal to the speed of flight. In many cases this
simplification does not destroy the essential features of the
flow. In other cases, the inviscid theory may serve as a
basis for including viscosity and heat conduction. Thus,
recent studies of the hypersonic boundary layer (refs. 2 and
3), which indicate that viscous effects become essential at
extreme Mach numbers (say, greater than 15), replace the
boundary layer by a fictitious solid surface and then utilize
inviscid theory of the sort considered here.

At sufficiently high Mach numbers, inviscid flow past any
given thin object requires nonlinear equations for its de-
scription. We take this as the definition of hypersonic flow:
Supersonic flow past a thin body is termed hypersonic if the
Mach number is so great that nonlinearity becomes an essen-
tial feature. Thus, the definition of hypersonic flow stands
on an equal footing with. the generally accepted meaning of
transonic flow at the other extreme of the supersonic range;
that is, flow at a Mach number so close to unity that non-
linearity (of a different sort) is an essential feature. These
two terms—transonic and hypersonic— are most meaningful
when defined (as here) only for thin shapes. They then
describe two quite distinct regimes which are, moreover,
separated by a considerable range of “ordinary supersonic’
flow in which the transonic and hypersonic nonlinearities are
unimportant, so that linearized theory can account for all
significant features of the flow. If one attempts to extend
the terms to thick bodies, the two separate regimes tend to
merge, so that one must concede that a flow field can be
simultaneously transonic and hypersonic.

It should be noted that the term hypersonic has occasion-
ally been used in the literature with other meanings than that
adopted here. Flows are sometimes called hypersonic if the

+ free-stream Mach number is simply large compared with
+ unity (say, 10 or 5, or even 3).

This is not strictly equivalent.
to the present definition because, in principle, at any given
Mach number a body can always be chosen so thin that
nonlinearity is insignificant. However, such extreme thin-
ness does not arise in practice, so that the two definitions are
equivalent for practical purposes. Again, Oswatitsch has
defined hypersonic flow as the limiting condition for a given
body as the free-stream Mach number tends to infinity
(ref. 4). 'This is a limiting case of the present definition and,
885
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indeed, Oswatitsch’s similarity rules for thin bodies are
simply special cases of the more genersl rules.

Associated with each of the various small-disturbance
theories is & similarity rule which connects flows at different
speeds past affinely related shapes. In the case of linearized
subsonic and supersonic theory, the similarity rule was fully
understood only long after the small-disturbance theory was
in common use. On the other hand, the transonic similarity
rule was*developed concurrently with the small-disturbance
theory. For hypersonic flows, the simplified theory and
associated similarity rule were first given by Tsien (ref. 5),
but were restricted to irrotational flows (and to plane or
axially symmetric shapes). This is a severe limitation be-
cause strong curved shock waves and consequent entropy
gradients and flow rotation are essential features of nearly
all hypersonic flow problems. This restriction was removed
by Hayes, who indicated in a brief note (ref. 6) that Tsien’s
similarity rule is valid for rotational flows and for general
three-dimensional shapes. The rule was further extended to
unsteady motion by Hamaker and Wong (ref. 7).

As a result of this circuitous development, there exists a
gap in the hypersonic theory. The similarity rule is known
for full three-dimensional flows with curved shock waves,
but the underlying small-disturbance theory has never been
written down. (To be sure, however, its form is known from
the analogy with nonsteady flow in one less dimension, which
was pointed out by Hayes.) For the special case of plane
flow, and for Mach numbers which are not arbitrarily large,
this gap has recently been closed by Goldsworthy (ref. 8).
The published examples of applications of the theory are
limited to the few special cases which are strictly irrotational
(e. g., the wedge and cone) or are assumed to be approxi-
mately so. :

The present paper undertakes a systematic study of the
small-disturbance theory for hypersonic flow. First, the
small-disturbance problem is derived by reduction of the
full equations of motion, boundary conditions, and shock-
weave relations. The similarity rule and unsteady analogy
appear in the course of this development. This portion of
the paper may be regarded as an elucidation of Hayes’ note,
with estimates obtained for the order of error. Next, it is
pointed out that to within terms of the order neglected, the
hypersonic similarity theory can be written in the form of
the similarity theory for linearized supersonic flow, so that &
single theory and associated similarity rule cover both
regimes. Then, a number of special problems are solved
according to the small-disturbance theory and are compared
with the full solutions when they exist.

The symbols used in the text are defined in Appendix A.

HYPERSONIC SMALL-DISTURBANCE THEORY
BASIC ASSUMPTIONS

Consider & three-dimensional body fixed in a steady uni-
form stream. Viscosity and heat conduction are neglected,
which implies that shock waves will be approximated by
abrupt discontinuities.

The body is assumed to be thin, in the sense that the
streamwise slope of its surface is everywhere small compared
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with unity. The degree of thinness will be measured by the
small parameter = which may, for example, be taken to be
the maximum slope of the body,® or its thickness ratio.
However, for inclined shapes + must be indentified with the
angle of attack if it is considerably greater than the body
thickness.

The free-stream Mach number M is assumed to be so high
that the flow is hypersonic. That is, linearized theory is
inadequate for predicting the essential features of the flow.
It is known that linearized theory yields an adequate ap-
proximation if the maximum body slope is small compared
with the slope of the free-stream Mach cone, that is, if fr<1
where B=+/M?—1. As this ratio approaches unity, linear-
ized theory grows increasingly inaccurate. Therefore the
flow is hypersonic if the ratio 87 is not small compared with
unity. Since 7 is small, this means that 8 and, therefore,
also M will be large in the hypersonic range, so that 8 is
nearly equal to M. Thus, the criterion for hypersonic small-
disturbance flow may be written

7K1

M1 } with M+~1 or »1 1

From a mathematical point of view, it is convenient to re-
gard all the small-disturbance theories as being asymptotic
forms of the full theory for vanishing by thin bodies. Thus,
the criterion for hypersonic flow may be expressed more
formally as:*

70
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Woe infroduce a Cartesian coordinate system with the
positive z axis alined with the free-stream direction (figure
1). Let the surface of the body be described by B(z, 7,2)=0,
and the complete system of shock waves by S(z,y,2)=0,
where the function S is not, of course, known at the.outset.

/
“-8:0 .
Figure 1.—Notation for hypersonic flow past thin body.

FULL PROBLEM

Consider the problem of determining the three velocity
components u, v, w, pressure p, and density p throughout the
flow field in the vicinity of the body. The mathematical
system required is the differential equations of motion

3 If the slope is high in some small regfon of the body, as at a alightly blunt leading edge, it
may be presumed that the small-disturbance theory remains valld except locally. In this
case r might be taken to be the thickness ratlo.

¢ Here the order symbols are used In the conventional sense; f(r) =0{1) as r—>0 mcnns that
J(z) remains bounded as r-> 0; and f(r) =0(g{]) means f(r)/g(r) is 0(1); simllarly, f(r)=o(1}
means f(r) vanishes as r0.
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(which govern the flow except at discontinuities), the Rankine-
Hugoniot relations across shock discontinuities, and bound-
ary conditions at the surface of the body and far from the
body.

Equations of motion.—The differential equatmns of mo-
tion, which express the principles of conservation of mass,
momentum, and energy, are

(continuity) (p0) s+ (p0)y+ (pw) =0 (32)
(z momentum) U+ vuy+w,+p./p=0 (8b)
(y momentum) uvz o0, +wo,+p,/p=0 (8¢)
(2 momentum) W~y ww,+ 1. p=0 (8d)
(energy)  w(p/p"):+A0(p/p")yFw(p/p?).=0 (3e)

. (See, e. g., ref. 9, ch. 1) Here subscripts indicate differen-
tiation, and 7 is the adiabatic exponent of the gas. The last
equation actually expresses the fact that the entropy is con-
stant along streamlines, which for steady flow is equivalent to
the conservation of energy (ref. 9, pp. 15-16).

Boundary conditions.—At the body the normal compo-
nent of velocity must vanish. The unit normal vector at
the surface is proportional to grad B, so that the condition
becomes

q. grad B=0
whers g is the velocity vector, or

(tangency) uB,+vB,,+wB,=0 at B=0 4)

The other boundary condition, which implies that the
body is flying into still air, may be taken in various equivalent
forms. For present purposes it is convenient to require that
all disturbances vanish far ahead of the body:

U=,

v and w—0
(upstream)

a8 r>— @ 5)
Y g )

P—>p

Shock-wave relations—At a shock wave, conservation
of tangential momentum leads to the requirement that the
velocity component tangent to the shock surface be con-
tinuous. The tangential velocity component (figure 2) is
given by 2:=[nXq)Xn, where the unit normal vector 7 is pro-
portional to grad S. It is convenient to use brackets to de-
note the jump in a flow quantity across a shock wave so that,
for example, |«] is the increase in 4 through the shock. With
this notation, the condition of conservation of tangential
momentum becomes

(tangential momentum)

] _[o]__ [w]
5SS, at S=0 (62)
This imposes two independent scalar conditions at the shock
wave, as physical considerations clearly indicate that it
should. For plane flow, say, in the z-y plane, the last term
becomes indeterminate and should, of course, be dropped:
The remaining shock-wave relations express the con-
geryation of normal momentum, mass, and energy acrossthe
308555—156—57

887

y

T

|

e
e

P-4

Ficure 2.—Components of velocity at shock wave.

shock. The magnitude of the velocity component normal

_ to the shock is (figure 2).

== uS:AoS,+ws,
LI SRS

Consequently, the other three shock relations are found to
be (ref. 9, p. 300), using the jump notation,

[p (uSz‘l‘vSv‘I‘w’s’z)] =0 ) (6b)

(mass)

(normal
momentum) [p (uS;}+vS,+w0S:)*+

(S2+ 824 8.5 p]=0 »at S=0 (6¢c)

(nergs) | 5 @SS, FoSy+

o S+8+80 B0, (6d)
So far, these relations are quite symmetrical, remaining
unchanged if the brackets are taken to denote the change
upstream rather than downstream through the shock. A
definite sense of flow direction is provided only by the
second law of thermodynamics, which requires that the
entropy shall not decrease across each shock wave, so that

(2nd law of thermo.) [%’,;:I >0 8t S=0 (6e)
For later use we record Bernoulli’s law
L1 Y p_

5 (w +v’—l—w’)+,y__1 p——const. ¢))

which holds, with the same constant, throughout the flow
field.

FIRST-ORDER PROBLEM
The full problem is now to be simplified by discarding all
but leading terms in the body thickness 7. This will give a
first-order hypersonic small-disturbance theory, which can
be expected to provide a close approximation for thin shapes.
The reduction is conveniently carried out by introducing
new independent variables which are of order unity through-
out the flow field. The form of this transformation is
suggested by simple examples and limiting cases. TFor
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example, the approximate solution for & thin plane wedge at
very high Mach number has been given several times.
Pertinent results are that the lateral extent of the flow field
is some moderate multiple of the wedge thickness, that the
density never exceeds (y-+1)/(v—1) times ‘its free-stream
value, and that the relative streamwise velocity disturbance
and the pressure coefficient are of the order of the square of
the surface slope. Again, the Newtonian impact theory,
modified to include effects of centrifugal force, which yields
the limiting solution for M= o and y=1, shows pressure
coefficients proportional to the square of the thickness.
The tangency condition suggests that, in general, all cross
wind velocities vary directly with the thickness. Such
considerations suggest introducing new (barred) independent
and dependent variables, and redefining the functions
describing the body and shock-wave surfaces, as follows:

= 3N

T=Z

=t

y=7v r (82)

CRE

1Y)

2
J

w=u,[1+74EF,7,2)]

v=/u’cn 75(‘5’?)5)

W=, TW(E,Y,2) - (8b)
p=p.(YM*7)D(Z,¥,%)
p=pu(E,5,7) J
B=F(E 'Y,2)

_ (8c)
S=5(z,7,2)

The new dependent variables are dimensionless, and the
new independent variables may also be regarded as dimen-
sionless if the body is of unit length.

We tentatively assume that all the new dependent vari-
ables (%, 5, etc.) and the new functions B and S are 0(1) as
7—0 for fixed M+, and that the reciprocals of the new
independent variables (1/z, etc.) are likewise 0(1). The
correctness of this assumption is suggested by examples such
as those discussed above; its justification will come from the
consistency of the resulting theory.

It is important to realize that the notation =0(1) includes
the possibility that in the limit 3 becomes arbitrarily small as
well as the possibility that it approaches a consftant nonzero
value; only the possibility of its growing arbitrarily large is
ruled out. For example, the reduced velocity components
i, v, and % will be identically zero in the region ahead of the
body. On the other hand, it is definitely implied here that
in at least some portion of the flow field the reduced quanti-
ties will not vanish in. the limit as 7—0.> To be sure, they
may not all be of order of magnitude unity in the intuitive
physical sense; for example, for flow past a thin flat wing @
and v will be moderate multiples of unity, but % will be
numerically much smaller.

$That Is, f(s) =0() Implles that f(r) 15 not 1dentically ofs).
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Reduced problem.—This transformation of variables is
now introduced into the full problem of equations (3) to (6).
If we discard terms which contain +* explicitly, such as +*puz
in the continuity equation, the differential equations become

(2 momentum) uz+ o0+ wuz+pz/p=0 (9)
(continuity) P+ (p0)i+(pw);=0 (10a)
(y momentum) v+ 005+ wor+25/p=0 (10b)
(z momentum)  wz+vwy+ww;+p:/p=0 (10c)
(energy) @/p")z+2@/p";+w(@[p");=0 (10d)
the boundary conditions become '
(tangency) B;+vB;+wB;=0 at B=0 (11)
u,9,w—>0
(upstream) D — 1[yM3+ a8 T —> — ® (12)
?—1

and the jump conditions at the shock waves become

(24 ial N
Sormentum) E_ 7]
S 5 St
(mass)

" [ (Ss+oS;+wS)=0
(normal

momentum) [F(S:+05+ 089+ _
(S +8P1=0 L 0 T=0 (13)

(nergy) [ BetoSy+S+
of thermo.) [—.;.,—]20 J

The parameters M and r of the full problem enter this
reduced problem only in the combination M7, which appears
only in the upstream condition on p (eq. (12)). In the
hypersonic range, where 1/Mr=0(1), the reduced problem
possesses complete internal consistency. This is most read-
ily understood by considering first the case where it does not.

In the range of linearized theory, where ¢ Mr<1, equa-
tion (12) presents a confradiction. It was assumed at the
outset that p is 0(1) but its value upstream, (1/M3%), is
then not 0(1). This inconsistency is an automatic warning
that the reduction breaks down in the range of linearized
theory. Indeed, it will be seen later that the assumed
orders of reduced quantities are then actually incorrect,

“and that the reduced equations fail to describe linearized

supersonic flow.

In the hypersonic range no such inconsistencies arise.
Hence, the tentative assumptions regarding orders of re-
duced quantities are justified @ posteriori, as are the sim-
plifications effected by discarding terms that involve +*
explicitly.

¢ More precisely, where AMr=0(1) as 0,
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Order of error.—Because terms of order +* have been
omitted in the reduction, first-order quantities will differ
from their exact values by 0(s*). For the special case of
plane flow, an analysis similar to the preceding has been
given by Goldsworthy (ref. 8), who considers only a single
bow wave:? he furthermore confines attention to the range
Mr~1 (which, to be sure, may be the range of most prac-
tical importance) and finds the error to be 0(1/34%). This
is equivalent to the present result in that range. However,
the present result is more general, holding for arbitrarily
large values of the similarity parameter (assuming, of course,
that the assumption of a continuum flow remains valid).
For example, at infinite free-stream Mach number, the
error in first-order theory is correctly 0(+%).

It is interesting to note that the error in the various first-
order small-disturbance theories decreases progressively from
0(77) in transonic flow to 0(r) in linearized supersonic flow
to 0(+% in hypersonic flow. Therefore, under the plausible
assumption (confirmed by later examples) that these mathe-
matical order estimates give a reasonable indication of the
actual physical magnitude of error, the practical need for
o second-order solution is seen to be greatest for transonic
flow and least at hypersonic speeds.

Unsteady analogy.—A significant feature of the reduced
problem is that the problem for the streamwise velocity %
has been uncoupled from that for the other variables. Equa-
tions (10) to (13) constitute a complete problem for 3, w, 7,
and p, which can be solved independent of %. Thereafter,
% (if required) can be determined from Bernoulli’s law:

1

==eonst. =g ifs

-+ G+ B (14)
Consequently, equation (9) and the first terms of equations
(12) and (13a) are superﬂuous and can henceforth be dis-
regarded.

As pointed out by Hayes (ref. 6), this first-order problem
is completely equivalent to a full problem for unsteady flow
in one less space dimension. The reduced problem of equa-
tions (10) to (13) is precisely the full problem of unsteady
motion in the y—z plane due to a moving solid boundary
described by B(X,7,z)=0, where 7 is interpreted as the time,
and all other barred variables as the actual physical quan-
tities.® The outline of the moving boundary is given by the
trace of the original thin shape in & cross-stream plane which
moves downstream with the free-stream velocity (figure 3).
For example, the problem of steady hypersonic flow past a
slender pointed body of revolution is equivalent to the prob-
lem of unsteady planar motion due to & circular cylinder
whose radius varies with time, growing from zero at time
Z=0. Hayes has givenaphysical explanation of this analogy.

It may be noted that the analogy is similar to that arising
in the slender-body theory of linearized compressible flow,
as exemplified by the work of Jones (ref. 10) and Ward
(ref. 11). There, however, the time-dependent analog is
incompressible, whereas here it is definitely compressible.

¥ It scoms Important to consider multiple shocks, because it is not at all obvious that sub-
sequent shocks have the same status as the bow shock; In particular, at M=o the upstream
Mach number is infinite for the bow shock, but has moderato supersontc values for the subse-
quent shocks,

8 Tho undisturbed fluld has density 5, =1 and pressure Do, =1/vAL33.
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. Fraure 3.—Plane of unsteady analogy.

Similarity rule.—The parameters M and r appear in the
reduced problem only in the combination M+, which is the
hypersonic similarity parameter of Tsien. This means that
for bodies derivable from one another by uniform contraction
or expansion of all dimensions normal to the stream, the flow
fields are related if the corresponding Mach numbers are
such that the similarity parameter Mr is the same in each
case. The nature of this relationship is simply that the re-
duced flow quantities, as functions of the reduced coordinates,
are the same in each flow. All distinctive flow surfaces, such
as the body itself and the shock-wave system, have identical
descriptions in terms of the reduced coordinates. This is
the hypersonic similarity rule of Tsien, which was extended
to rotational and three-dimensional flow by Hayes. Its im-
plications with regard to pressure and force coefficients will
be summarized later, after the hypersonic rule has been com-
bined with that for ordinary supersonic flow.

Extension to unsteady flow.—For simplicity, the preced-
ing discussion has been restricted to steady flow. It can
readily be extended to unsteady motions involving small
time-dependent oscillations of a thin body exposed to a steady
uniform stream (or, from gnother point of view, flying through
still air executing slight time-dependent variations from s
mean steady rectilinear flight). The full problem is ob-
tained by replacing a substantial derivative ud/dz--vd/dy-}
wd/[0z wherever it appears in equations (3) to (6) by its un-
steady counterpart 0/Ot+ud/oz+vd/0y+wd/dz. Corre-
spondingly, if a reduced time ¢ is introduced according to

't-=umt

then the unsteady small-disturbance problem is obtained
from the steady problem of equations (9) to (13) by adding
/ot throughout to the operator d/0Z450/07+wd/o5. For
example, the reduced continuity equatlon (eq. (10a)) be-
comes, for unsteady motion

Pit izt (0)5+ (P0);=0 (16)
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The problem for ¥ remains uncoupled from the problem
for the other variables? Furthermore, in the remaining
problem the T and ¢ derivatives appear only in the combina-
tion 0/0f+0/0Z. This means that the number of independ-
ent variables can be reduced by one by adopting the view-
point of an observer who is moving with the free stream (or,
to put it another way, who is fixed in still air with the body
moving past). Thus, introducing *‘still-air” coordinates

=T Ul
=t

reduces the unsteady small-disturbance problem to exactly
the form of the steady problem (eqs. (9) to (13)), with % re-
placed by ¥. This means that Hayes’ analogy remains
valid for unsteady motion if account is taken of the actual
variation of the contour with time as well as the apparent
variation due to relative motion depicted in figure 3. This
result was first given by Hamaker and Wong (ref. 7). Re-
cently, Lighthill has analyzed oscillating airfoils at hyper-
sonic speeds from this point of view (ref. 12).

If the body oscillates so rapidly or with such large ampli-
tude that B; is much greater than Bz, the error remains of
0(+*) only if + is taken to be the maximum instantaneous
slope of particle paths at the surface of the body.

Unified supersonic - hypersonic small - disturbance
theory.—It would be advantageous if the hypersonic small-
disturbance theory included linearized supersonic theory as
a special case. Then the awkward question of what is the
lower limit of hypersonic flow would not arise. A single
theory, and corresponding similarity rule, would hold for all
supersonic speeds above the transonic range.

In the case of transonic small-disturbance theory, a uni-
fication of this sort is known to arise quite naturally (ref.
13, p. 9). In its original form (with $? not replaced by
2(A4-1)) transonic theory embraces linearized theory as a
special case, 80 that it furnishes effectively & unified subsonic-
transonic-supersonic theory giving a first approximation af
all speeds below the hypersonic range.

In the case of hypersonic flow, a connection with the ad-
joining supersonic range can likewise be effected (ref. 14),
but the reason therefor is much less straightforward. An
immediate obstacle is the fact that the approximations lead-
ing to the hypersonic theory and those leading to linearized
theory are mutually exclusive. The difficulty arises in the
continuity equation (eq. (3a)) which in the hypersonic case
was shown to reduce to

=T Ul
17)
=t

Yo pzt (p0)y+ (pw)s=0 (18a)
but in linearized theory reduces instead to
Ue prt Pl peo (0y+10,) =0 (18b)

The term pou, must be retained in linearized theory’
whereas it must be neglected in hypersonic theory in order
to achieve similitude. It would therefore appear impossible

9 However, u can no longer be found immediately In terms of the solution of the remaining

problem, becauss in unsteady motion there 18 no useful counterpart of the Bernoulll equation
(2q. (14)); fortunately, « is seldom actually required.
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to give a small-disturbance theory which is general enough
to describe both hypersonic and ordinary supersonic flows,
and yet simplified enough to retain the corresponding simil-
itudes. It must be regarded as a coincidence that this can,
nevertheless, be accomplished.

It is shown in Appendix B that the hypersonic theory
covers the ordinary supersonic range if it is reinterpreted in
accordance with the similarity rule for linearized theory
(ref. 15). It is found that solutions of hypersonic small-
disturbance theory remain valid at small values of the
parameter A+ (which is the domain of linearized theory),
provided that A7 is replaced by g7 and the results are re-
interpreted in terms of physical variables according to

u=u,[1+7 U(E,F,3; )] , )
?=U,T 5(57-?7:2; ﬂ‘r)
W=7 '177.(5:?7:5: B7)

P=Ds { 14+vAM32 [5(5,17,2; B — ’7612_72]} =
p.( wrep-%)

—pm{1+z‘§-[3(§,z7,2; Br)—1]}=p,, %-_é J

The pressure

(190)

- Y

rather than according to equation (8).
coefficient is given by

P~ Do __ 1
OElp 27'2<p 7‘9,1,)
2 u’

(19b)

Since the error is 0(%) in the hypersonic theory and 0(r/8)
in the linearized theory, the error in this unified theory is
0(7®) or 0(r/B), whichever is the greater.!®

The flow quantities of chief aerodynamic interest are the
pressure coefficient and the various force and moment co-
efficients derived from it by integration. If the hypersonic
small-disturbance problem has been solved to find G,/* as a
function of the reduced coordinates and the parameter A7,
the result is rendered valid also in the ordinary supersonic
range simply by replacing M+ by Br.

Unified similarity rule.—The unified supersonic-hyper-
gonic similarity rule may be summarized as follows;

For steady flow past thin bodies derivable from one
another by uniform contraction or expansion of all dimensions
normal to the stream, the flow fields are related if the cor-
responding Mach numbers are such that the similarity
parameter Bt is the same in each case (r being any measure

of thickness). The relationship is such that the flow fields
are identical when expressed in terms of the reduced flow
quantities

U—U, © W DP—Da

T G, £ (i— 1)
P, | i, . MPrp. ! M \p,
as functions of the reduced coordinates

2
Y2
T 7

1 For slender shapes such as thin bodies of revolation, the error is only 0(r¥/87) in the lin-
earized theory and, hence, 0(+2) or 0(r¥/5%) in the combined theory.
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When the body oscillates slightly, the same is true with the
addition of u.t to the reduced coordinates, provided that
the time history of oscillation in terms of reduced coordmat.es
is the same for each body.

From the rule for pressures follows the equality of the
reduced force and moment coefficients

Op O 0,,
A R ) ete.

Here k=1 if some plan-form ares is taken for reference and
k=0 if some cross-sectional area is used. The connection
botween the similarity rules for forces and moments is con-
tained in the statement that the center of pressure is constant
in terms of the reduced coordinsates.

An unlimited number of equivalent forms of the reduced
variables can be produced, for example, by multiplying by
any power of the similarity parameter. However, the forms
given here are the most useful ones in the hypersonic range,
because they involve functions of order unity. In the super-
sonic range no forms have this advantage, except in the
special case of plane flow, where it would be convenient to use

B (—"‘—-1) adf g,
T \Uy T
It should be noted that in the hypersonic and combined
similarity rules the adiabatic exponent vy must remain

fixed, whereas its magnitude is arbitrary in the supersonic
case (since it does not appear in the linearized problem).

TYPIGAL APPLICATIONS OF HYPERSONIC SMALL-
DISTURBANCE THEORY

Several problems will now be solved according to hypersonic
small-disturbance theory. These examples will illustrate
possible methods of golution, and demonstrate the degree of
simplification resulting from the assumption of small dis-
turbances. Comparison with the corresponding solutions of
the full equations (when available) will indicate the accuracy
to be anticipated when the theory is applied to more elabo-
rate problems.

PLANE AND AXIALLY SYMMETRIC FLOWS

The examples to be considered are either plane or axially
symmetric flows. Accordingly, it is convenient to introduce
coordinates z,r where in the case of plane flow r is the Car-
tesian coordinate y. Henceforth, » will denote the velocity
component in the r direction, which is the radial velocity
for axially symmetric flows.

Equations of motion.—In these coordinates, the hyper-

sonic small-disturbance equations of motion (egs. (10))
become

Fit G+ F=0 (208)

w5+ 20 (20b)

@/e )50 )r= (200)

The distinction between two and three dimensions arises only
in the continuity equation, where ¢=0 for plane flow and
o=1 for axially symmetric flow.

--rets)
7

,/'" f'TbA’/

Ll ¢

Fiaure 4—Notation for plane or axially symmetric body.

Boundary and shock conditions.—Let the surface'fof the
body be described by r=r+b(z), as indicated in figure 4.
Then the tangency condition of equation (11) becomes

5=b'(%) at F=b() (1)

The upstream conditions are given by equation (12).

The examples to be considered will involve only a single
bow shock wave, which may be described by r=7s(z). The
shock-wave conditions are given by equations (13), but in
this case it is easier to take advantage of the convenient
relations which are listed in reference 16. Equations (136),
(128), and (129) of reference 16, when reduced to hypersonic
small-disturbance form, give

- 2 g1,
v=')’_'+—i = 8 (z)
— 2v¢—(r—1 7 -
W ’O > at 7=3(z) ©2)
- +1ne
PP =1 e )

where x=2M7rs’(%) i3 the hypersonic similarity parameter
based on the local shock-wave slope.

Stream function.—The continuity equation (eq. (20a))
may be accounted for by introducting a stream function,

setting
o=y;
T } (23)
pr=—1Y;
so that
5=—£
v @9

Then equation (20c) states that 7/s” is & function only of ¢, as
is clear from the fact that entropy is constant along stream-
lines between shock waves. Substituting into the momen-
tum equation (20b) gives
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Y (Yot o' for plane flow (250)
VVe—WstYiYe=
: ‘l:;’:l [‘Yw (vn ?)-I—cq’gb;’] for axially symmetric flow (26b)
where The auxiliary hypersonic parameter xy=2M7r can now be
w(Y)=D/p" (25¢) | eliminated in favor of M3, with the result that
The pressure is given by r 1 y+1, | (’Y+1) (33)
o b4 T ! M’a’
P=wpr=w(¥;/r")” (26)

PLANE WEDGE

As a simple infroductory example, consider hypersonic
flow past a thin wedge of semivertex angle 5. Here, and in
the examples to follow, the solution is most readily carried
out by assuming a given shock wave and Mach number and
calculating the corresponding body shape. It is therefore
convenient to identify the thickmess parameter + with the
shock-wave angle rather than the wedge angle. This is
quite permissible at hypersonic speeds, where they are of the
same order; it is also permissible in the ordinary supersonic
range, where they are not, provided that & rather than r is
used in the error estimates. Let b=25/r be the ratio of wedge
to shock angles.

The flow field is conical (velocities constant a.long T&YS), 50
that the stream function has the form

v(z,7)=%f(6) @7)
where 0 is & conical variable, defined by

T

which varies from b at the wedge to unity at the shock wave.
Thus, equation (25a) becomes

F PP =Y f TH0]=0 (29a)

where, from equations (22) and (25¢)
20— (=) [ 20— ™|
T YD’ LoD j (29b)

with k=M. The shock-wave conditions of equatlon (22)
give (since 8'==1) '

F)=1

21\ (7+1)K02 (30)
Tt ,

The solution of this problem, which corresponds to f//=0,is

_ Ot 2’=1)
AL RN S

(31)

Requiring f to vanish at the surface gives the ratio of wedge
to shock angles
&_2(k’ —1)

L A

(32

Then from equations (26) a.nd (27) the pressure coefficient:
at the wedge (or anywhere between the wedge and shock
wave) is found to be

0’=5,[v-;1 L ‘/(7;1>2+ Mé’a’_l (34)

These results were first given. by Linnel (ref. 17). Numerical
values of pressure coefficient afe compared in figure 5 with
the exact results for wedges of various thicknesses. Here &
has been taken to be the tangent of the wedge angle, though
within the scope of the small-disturbance theory it might
equally well have been identified with the sine of the angle,
the angle itself, etc.

-1
89 tan_ A}

4 LSmall-dIsturbance theory

333 .5 | ‘D
~ MRs
Figone 5.—Wedge pressure according to hypersonic small-disturbance
theory.
Unified supersonic-hypersonic result.—Replacing the

parameter 45 by 85 renders the solution valid in the ordinary

supersonic range as well:
/ 1 2

This result is again compared with the full solutions in figure 8.
The advantage of the unified result is obvious. In all sub-
sequent examples the results will be presented only in this
form.
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FiauRE 6.—Wedge pressure according to unified supersonic-hypersonic
small-disturbance theory.

It is interesting to note that this formula has been proposed
by Ivey and Cline (ref. 18) for predicting the surface pressure
on any supersonic airfoil. They obtained it by seeking an
interpolation formula connecting Ackeret’s linearized theory
with the hypersonic result of Linnell (eq. (34)) for & tangent
wedge.

INITIAL GRADIENTS FOR PLANE OGIVE

Using the full equations, Crocco first determined the initial
gradients of flow quantities at the tip of a plane ogive by
perturbing the solution for a wedge (ref. 19). His analysis
has been repeated and elaborated upon by Schafer (ref. 20)
and others. This problem provides & good test of the small-
disturbance theory in a case involving shock-wave curvature.
Let b be the initial ratio of body slope to shock-wave slope,
and ! the corresponding ratio of radii of curvature. Then in
physical coordinates the body (figure 7) may be described by

=T (b:c—i——:lz e+ .. > (36)

and the shock wave by

=T (:n—l—% led*t .. ) ‘ (37)‘

Fiaure 7.—Plane or axially symmetric ogive.

Here ¢ will be negative for the convex shapes usually en-
countered in practice.

Shock-wave conditions.—Conditions just behind the
shock wave are found from equations (22) to be given by

= 20™—1) L =Dt +5)’—2 , }
L R P W PR ) X o
(382)
= rHD? : 4
LGl oy REPec A

w=D[p"

2’ —(v—1) 24+ (—1)x" ]
Y+ Dre (r+ D T:I {1+

-

4v(r—1) (k?—1)2 -
B —G—T)] BF =D 2T } (880)

where xy=M7~ i3 the auxiliary hypersonic similarity param-
eter based upon the initial shock-wave angle.

Equations of motion.—The flow behind the shock wave
will consist of & uniform field upon which is superimposed a
perturbation field due to body curvature. Hence, along
each ray from the vertex the flow quantities will have con-
stant values associated with the initial slope of the body plus
linear variations proportional to the initial curvature
(together with higher variations which need not be considered
in evaluating initial gradients). Thus, the stream function
of equation (25a) can be written in the form

¥(@,7)=% fO)—1czgO)+ ... (39)
Al(;ng the shock wave
y=r=z+ ...

so that the entropy function » can be written as y¥(w) by
replacing & by ¥ in equation (38¢). In this form (since w is
constant along streamlines) the expression applies through-
out the flow field downstream of the shock wave, so that

o) =wl[l+lewyy+ . . . ] (408)
where
2’ —(—1) 2+(’Y—1)x0’:l"
T O N § P (r+1xo’
(40b)

- 4v(v—1) (r*—1)%
I R —(r—D] RFO—D)xe7

Substituting these expansions for ¢ and o into equation
(25a) and equating like powers of z yields two ordinary
differential equations. The first is equation (29a), corre-
sponding to the basic flow past a wedge. The second, when
simplified with the aid of equation (31), becomes

R e N e I G

Solution for g—By expressing conditions just behind
the shock wave in terms of conditions at §=1 through Taylor
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expansion, the boundary conditions on g are found to be

. m—l
o=

4(v4-Dxo*
24 (v—1) &3

(42)

&)=

The velocities associated with g vary linearly with distance
from the apex. Hence (as is readily verified from the differ-
ential equation), g is a quadratic function of 6, and can
therefore be written as

£0)=¢)—1—0)¢'(1)-+3 1—0)%"(1) @3)

Here only g’/(1) is unknown, and it is immediately found
from the differential equation to be

30— Do+ B—)re’+2(r+2) ”
i — DT O— Dl

Curvature ratio and surface pressure.—The body curva-
ture and pressure gradient can be expressed in terms of the
values of g(6) and its derivative at #=b. From equations
(42) to (44) it is found that

&' ()=20+1)x"

(b\_2(2’Y—1)xo‘+('Y+5)Ko’—(’Y—1)
(D' —D2+H0—1Dxo’]

_ 2k0°(Bro* 1)
ALy ) oy

The surface of the body is determined by the wanishing of
the stream function. Thus it is found that the ratio of
shock-wave curvature to body curvature is given by

~2e0) 2[2(27—1)%‘4‘(')’4‘5)"0 —(—1)]

The initial pressure gradient on the surface of the body is
given by

(45)

o0,
oz [»

1ty & 0)
—voy O ED e @)
so that in terms of the initial slope RBy’=b7 and curvature
Ry’=cr of the body

20, O 1)x*Br’+ D27k’ —(Y—1)]
or Ip  (ro®—D)[2(2Yy—D)xe*+(v+5)x'—(v—1)]

Although these results have been expressed in terms of the
auxiliary parsmeter x,=2»M 7, they can be given explicitly in
terms of Mach number and apex angle (in the combination
MR =2Mb7) with the aid of equation (33). In this respect
the small-disturbance solution is superior to the full solu-
tion, which yields no such explicit results. Replacing
MR, by SRy renders these results applicable at all super-
sonic speeds.

The small-disturbance result for the curvature ratio is
compared in figure 8 with the full solution for various vertex
angles, taken from the convenient tabulation of reference 21.
Figure 9 gives the corresponding comparison for the initial
pressure gradient.

RJ/R,”  (48)

flow quantities are constant along rays.
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8
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8=l5°—----. /
(Ref. 21) <l L5
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ot = <Small-disturbonce theory
0 | |
.25 333 5 | @
BR&

Figure 8.—Initial ratio of shock to body curvature for plane ogive.

N ]
z-8=5° (Ref. 21)
\/y_\\ ( 2
4 ,10° N5
Smoll-disturbance theory- N
aCp _
3lFpfipx) N
e - IR, X+ V2Rox +.
1< E_"
035 333 5 [ @

BRs
Figure 9.—Initial pressure gradient on plane ogive.

CIRCULAR CONE

Consider flow past a slender circular cone of semivertex
angle &, (figure 10). Again it is convenient to regard the
Mach number and shock-wave angle as given, and to solve
for the corresponding cone angle. Thus let the shock-wave
angle be r and the cone angle §=br, where again b is a
constant less than unity that is ‘to be determined.

Equation of motion.—The flow field is conical so that all
This means that
the stream function of equation (25b) has the form

YED=TYO, ==l (49)

Fiaorp 10.—Notation for cone.
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It follows that the equation of motion (eq. (25b)) becomes the
nonlinear ordinary differential equation

gty T N

4 f"'—2ff ='onoT_1)—<f _—7) (50)
Here wy is the constant value of 7/p* behind the shock
wave, given by equation (40b), and x=M7 is again the
auxiliary hypersonic similarity parameter based upon shock-
wave angle.

Boundary conditions.—The shock-wave conditions of
equation (22), together with equation (49), combine to give

Fy=3

NN o e s
f (1)—2——1+(.,_;;K0

(61)

The condition of tangent flow at the cone requires that
the stream function vanish at the surface:

J(®)=0 (52)

Numerical integration.—The nonlinear equation for f,
equation (50), can be readily integrated numerically.
Choosing a value of the auxiliary similarity parameter o,
we calculate w, from equation (40b) and the initial values
of f and F/ from equations (51), and then integrate step by
step inward from the shock wave until f vanishes, which
determines the cone surface. With the ratio of cone angle
to shock-wave angle §/r=>b thus determined, the results
can be re-expressed in terms of the similarity parameter
based upon cone angle. Eight or ten intervals between
shock wave and body yield ample numerical accuracy,
provided that in each step the predicted values of f and its
derivatives are corrected by averaging and iterating before
proceeding to the next step. (For values of x, near unity,
the first few intervals near the shock wave must be taken
smaller than the others.)

The pressure coefficient is obtained in terms of the first
derivative of the stream function according to

b @] @

where the similarity parameter 145 of the hypersonic prob-
lem is to be reinterpreted as 88 so that the result is applicable
throughout the entire supersonic range.

Computations have been carried out for y=1.405, in
order to compare with the full solutions tabulated by
Kopal (vef. 22). The chosen values of the parameters are
listed in the following table, together with certain of the
results:

M~ 3T B @/ Cp,/8
1. 04 0. 3620 0. 3765 1. 217 3.183
119 . 6645 . 6599 1 522 2. 646
L 58 . 7281 1. 150 2. 207 2. 333
2. 87 . 8604 2. 469 3. 925 2. 1564
4. 47 . 8921 3. 988 4. 973 2.118

® . 9140 © 6. 149 2. 091

368056—b56———58
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The small-disturbance result for surface pressure is com-
pared with the full results (from ref. 22) in figure 11.

4
. N /-Small—disturbance theory
7
3 % l
NN
\\~
N Full solution (8=10°——~~ R
R (Ref. 22) 13=15°~——~/ S
I S=1ton' A,
0
.333 5 , | @
BR;

Figure 11.—Burface pressure on cone.

The differences between the full solution and the small-
disturbance limit are closely proportional to the square of
the thickness, in accordance with the estimate of the error as
0(3Y) or 0(8*/6%. It is noteworthy that the fractional differ-
ences are in fact very nearly equal to 6*. The same is true of
surface pressures in the previous examples. This suggests
that the mathematical order estimate may be relied upon to
give a quantitative prediction of the error in the small-
disturbance approximation.

This approximate solution for cones was previously sought
by Shen (ref. 23), whose result is also shown in figure 11. It
appears that his solution, which involves more involved
computations, must contain errors.

INITIAL GRADIENTS ON OGIVE OF REVOLUTION

Consider the axially symmetric counterpart of Croceo’s
problem: the determination of the initial gradients of flow
quantities at the tip of an ogival body of revolution. This
problem has recently been considered for the full equations
by Cabannes (ref. 24) and by Shen and Lin (ref. 25). It will
be seen that the small-disturbance solution serves as a useful
guide to the full solution. Iun particular, it clarifies the
behavior of the solution near the surface, which was glossed
over by Cabannes and in Shen and Lin’s work was mis-
construed to indicate a singularity which implied wrongly
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that the initial pressure gradient at the tip of an ogive is
infinite.

As in the plane problem, let the body be described in
physical coordinates by

=17 (bz—l—é e+ . ) (54)
and the shock wave by
re—=r (a:—l——flg led?. . > (55)

(figure 7). Conditions just behind the shock wave are given
by equation (38), with —yz and 5 replaced by —yz/Ff and
Vi,

Equations of motion.—Again along each ray the flow
quantities have constant values corresponding to the initial
slope plus linear variations proportional to the initial curva-
ture (together with higher variations which are considered
later). Hence, the stream function may be written in the

form
¥v@E,N)=2(O)—cz’9O)+... * (56)
Along the shock wave

1, 1.,
'l,[l=-?:7'a=2$ +. ..

so that an expression for the entropy function « throughout
the flow field downstream of the shock wave is obtained by
replacing ¥ with 4/2¢ in equation (38¢). Hence,

o) =wll+lew2¢+ . . ] (67

where «p and o; are given by equation (40b).

Substituting these expansions into equation (25b) and
equating like powers of z yields for f the nonlinear ordinary
differential equation already treated in the problem of the
cone (eq. (50)), and for g the linear equation

Dg'’=A+Bg+Cq’ (58a)
whose coefficients depend upon f according to
rrED) [T 12 3

A=wpw1 e el f ’Y-\/Tf (L—f”>:|
B=12ff"

7CT+D 9 (58b)
O="oq = [7+ —r+D) g ]—8 ! (

7(7+1D
D=vo 5=y o1 —4f

o

As in the plane problem, initial conditions on g are found
by expressing conditions just behind the shock wave m
terms of conditions at =1 through. Taylor series expansions:

1
=g e

2 F— D’ 1-2(2v+-3)
2+ 0—DxT

(59)

gO)=—
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Behavior of solution near hody surface—Just as condi-
tions at the curved shock wave have been related to those at
6=1, so with the present coordinate system it is necessary
to relate conditions at the surface of the body to those on the
initially tangent cone #=5b. However, the solution is non-
analytic near the surface, which means that Taylor series
expansions do not exist. It is therefore necessary to examine
the nature of the solution in the vicinity of the body.

The function f associated with the basic conical flow is
analytic near the surface (and vanishes at §=0), so that it
has a Taylor series expansion:

S(6)=(6—10) £(6)+0[(6—8)7 (60)

It follows from equations (58b) and (60) that near the surface
the coefficients of the differential equation for ¢ behave like

An~(O—b)
B~(6—b)
C~1

D~1

(61)

Therefore the point §=b5 is a singular point of equation (58a),
but is an ordinary (nonsingular) point of the homogeneous
equation obtained by deleting A (see ref. 26, p. 73). There-
fore the general solution of the homogeneous equation is
analytic and can be taken to have the form

gb=$an 6—b" (62)

where all higher coefficients @, can be expressed in terms of
the two arbitrary constants a, and @; by means of the differ-
ential equation. Then the procedure for calculating a
particular integral (ref. 26, p. 122) shows that the nonhomo-
geneous equation (58a) has a particular integral of the form

g,=(0—b)3/22;5c,,<0—b)“ (63)

where the coefficients ¢, can all be determined. Here the
3/2-power branch point arises from the fact that the pencil
of fluid striking the tip of the ogive is spread thin over the
entire surface, and the linear entropy gradient at the tip
due to a curved shock wave is thus intensified to a square-root
gradient normal to the surface elsewhere. The complete
solution of equation (58) is the sum of g, and g,.

In treating the full problem in reference 25, Shen and Lin
cleimed to have found a logarithmic singularity at 6=b,
which considerably complicated their analysis. Because of
this singularity, their solution was restricted to concave
bodies (although they conjectured that it might be extended
to convex bodies). The singularity also led to the conclusion
that for an analytic body shape the shock wave is nonana-
lytic, and vice versa. Furthermore, the singularity would
imply that the initial pressure gradient on an analytic body
of revolution is infinite, although numerical solutions by the
method of characteristics give no indication of this.
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The present solution shows no such singularity. It seems
unlikely that a singularity could have disappeared as & result
of making the small-disturbance approximation, since this
would imply that the approximate model does not retain the
essential features of the full problem. The alternative con-
clusion is that the singularity does not actually exist in
the full problem. This has subsequently been confirmed by
the authors of reference 25" who find that the singularity is,
in fact, only apparent in the sense of reference 26, page 406.

It may be noted that Cabannes, in treating the full
problem, has completely ignored the nonanalytic nature of
the solution, and simply extrapolated higs numerical solution
to the surface of the body (ref. 24). His results may not be
seriously in error, because the effect of the nonanalyticity
is small. ' ' .

Numerical integration.—The differential equation for g
has been integrated numerically for the six values of the
similarity parameter chosep previously for the cone. The
integration was carried out step by step starting from the
known values at the shock wave and using the same intervals
as for the cone. This step-by-step solution was joined at the
two points nearest the suriface with the series expansjon
about 8=> given by equations (62) and (63):

g(o)=%§ wof ! (B2 (6—byor2 |:1+.% (3 x-%) ot .. .:|+

@) [1+2Aé— A1+ e+ ... ]+

, 1 3—7_,, 3=
g(b)(a—b)(1+§= PRS- w+...) (648)
where
(BT a—b
A= Yero f_l%‘“’—:l » e=—p— (64b)

(Values from the step-by-step integration and the series
expansion were also compared at the third point from the
surface as & check.) DBecause they are based upon the
previous solution for & cone, the computations were carried
out with y=1.405.

Curvature ratio and pressure gradient—Because the
nonanalyticity appears only in higher terms of the series,
surface values of g and its first derivative (but no higher
derivatives) can be expressed in terms of values at §=b.
The surface of the body is determined by the vanishing of
the stream function. Thus the ratio of shock-wave curva-
ture to body curvature is found to be given by

110
2¢(b)

Proceeding as in the plane case, it is found that the initial
pressure gradient is expressed in terms of the initial slope
Ry =br and curvature B,’’=cr of the body by

G, _ ()"
oz |b—M2R012b(7_1)

(65)

[_ggz b()b)] RD,RO’, (66)

Numerical values of g(b) and g’(b) are listed in the follow-
ing table, together with the resulting values for the curvature

11In a private communication; see also Addendum No. 1 to ref. 25,

897

ratio I and surface pressure gradient:

1 oC,
’ [k
BRy g(b) gl(b) 1 RJ/Ry7 oz |s

0. 3765 5. 170 —8. 502 0. 0426 5. 632
. 6599 1. 800 —38. 640 . 2346 4. 662
1. 160 1. 578 —4. 073 . 5106 *4 514
2. 469 2.101 —6. 820 . 8039 4. 684
3. 988 2. 487 —8. 638 . 8921 4. 802
© 2. 931 —10:76 . 9586 4 929

The curvature ratio is plotted in figure 12, and the initial
pressure gradient in figure 13. The curvature ratios calcu-
lated from the full equations by Shen and Lin are also shown
in figure 12 for comparison, because the error introduced by
incorrect treatment of the solution near the body is probably
small.

.8
$=30°
(Ref. 25)
7
4
— -—
0
.333 5 , 1 o8]
BR,
FigorE 12.—Initial ratio of shock to body curvature for ogive of
revolution.

HIGHER TERMS IN SERIES FOR OGIVE OF REVOLUTION

It might be supposed that for an ogive of revolution de-
scribed by a power series, the perturbation scheme could be
continued indefinitely to find successively higher terms in
8 power series expansion for surface pressure. However,
because of the nonansalytic nature of the stream function
near the body, complications arise if one proceeds simply
by adding further terms to equation (56).

It has been seen that g(6) involves an authentic 3/2-power
branch point near the surface. However, it can be shown
that the next term will involve a spurious 1/2-power branch
point there, the next an inverse 1/2-power singularity, and
go on. As a consequence of this spurious reinforcement of
the actual nonanalyticity, it is impossible to evaluate surface
pressures. Hence, straightforward continuation of the per-
turbation procedure breaks down. )

The difficulty arises from the fact that in the first perturba-
tion, the 3/2-power branch point in g arises at the basic cone
(6="0) rather than at its actual location on the ogive surface.
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Figurs 13.—Initial pressure gradient on ogive of revolution.

Although this discrepancy has no effect upon the first per-
turbation, it is compounded in subsequent terms so as to
be catastrophic. The remedy is to choose a slightly strained
coordinate system such that for each term the 3/2-power
branch point appears precisely at the body surface. Both
the difficulty and the remedy are just those considered by
Lighthill in his discussion of a technique for rendering ap-
proximate solutions uniformly valid (refs. 27 and 28). As
in the previous examples, the solution proceeds, in effect, by
assuming a given shock wave and determining the corre-
sponding body shape. Therefore, the required straining of
coordinates is not known at the outset, but must be deter-
mined to successively higher accuracy as the solution
progresses; this is characteristic of Lighthill’s technique.
With this modification, the perturbation procedure can,
in principle, be continued indefinitely. It can therefore be

concluded that an analytic body of revolution is accompanied -

by an analytic attached bow shock wave at supersonic speeds,
and an analytic pressure distribution.

Uniformly valid equations of motion.—Let the body be
given in physical coordinates by

=1 (bz—l—% ca:’—l—el.) d+ .. > 67
and the corresponding shock wave by
P I:a:-l—é loa* s (md-+ne) -+ .. ] ©9)

Now introduce & slightly strained radial coordinate 7 such
that the body surface is given by 7#=bz. The simplest
choice is

= = 1 1
T‘=1‘-—§cfa—-‘6d?53+ PRI (69)

The procedure which led to equation (57) gives for the
entropy function behind the shock wave
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o) =wo{ 1+ wile~r2¢+[w1(md+nc®) +wlicfly+ . . .} (70n)
where w, and w; are given by equation (40b), and
D BT (70b)
The stream function has the form
V=2(6)—cFFE) — 25 (O) +dh @I+ . . . (71)
where 8 is the nearly conical coordinate 7/z. The differential

equations which result from substituting this series into the
equation of motion are simplified by setting

HOEEORENL0)

MO=mh@)—3 7 G

i@=r (o)+nh(0)+ lg’(a)——f”(a)

(The functions g, A, and 7 thus mtroduced are those which
would appear in place of 7, %, and 7 if no straining of the
coordinate system had been undertaken.) Then the differ-
ential equations (and boundary conditions) for f and g, as
functions of the strained variable 8, are (as implied by the
common notation) found to be just those solved in the
previous sections, where f and g were functions of the
unstrained variable 8. The differential equations for the
new functions % and 7 are

Dr’'=E+Fh+Gr
DJ"=I+E7+G?’

(73a)

where D is given by equation (58b), and

f' (r+D 9

e S (L)1
F=4(f"+4£f")

) Al

Feron ey | 5174 (F5) (¢-5) -
2 )
%{y g ke 2040 5B 1 |
(o ]y e

2g8'f' —2(g"—22¢')] J

Boundary conditions.—Again, expressing conditions just
behind the shock wave in terms of those at §=1 by Taylor

G=7w

. (73b)
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series expansion and simplifying with the aid of the differ-
ential equations gives

h1)=3 )

, , 2'()
KO=5 [ ¢ 0—5 |

=% [25(1) oTew)

-

- (74a)

2—(v—1)xe?
[24+Or—Dr’]? )

g(1) and ¢’(1) by

I(l)_ flll(l) l/(l) 4(’Y+1)Ko

where f/(1) is given by equation (51b),
equation (59), and

101Y— (7_1)"0’ A
f (1)_2+('Y_1)K0§
f01(1)= 2k [2Vke2—(Y—1)] [24 37+ Do’

(r+Dk’—1) 2+0—Dr’*

+1 [4(r—1) @v+3)+4(27r4-37*+5) ro*—

3O =17+ (67+1) ke*+2(v—1) (57+3) 17 X
{(*—1) 2+-(r—D)x P} 1 J

Behavior near body surface—The fact that f(§) is
analytic at §=b implies that the full solution for % is also
analytic, and that the solution of the homogeneous equation
for j is analytic. The coefficient I is proportaonal to
6— b)'a' ? 80 that & particular integral for j is proportional
to (6—5)"2. TFor purposes of computation it is important to
separate the regular part of I from the singular part, because
either may predominate for the closest practical approach
to the singularity, depending upon the value of the similarity
parameter. Furthermore, the accuracy of joining the step-
by-step solution for j to the series is increased by treating
not j itself but the combination j+g’/2l. Hence, the series
employed is

j+§%=@~’_fz@ (5._1,)3/2[1+ b (5+3v“"—;1—2ﬁ>ve"—. : :l+
3‘@” AR e N

i [1HmatiPret.

> (74b)
”(1)—

3— HeT

o

7O [1+5 ¢ aot..] s

where f,=£(b), etc., X and ¢ are defined by equation (64b),
and
(=8)

8o

2\/5 ws (bib/)s/z

3r &

r=b
(75b)

y=

Numerical integration.—The differential equations for
k and j have been integrated numerically in the manner
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outlined previously, with y=1.405. Because & represents
actually (like g) only & first perturbation of the basic conical
flow ® and is furthermore regular near the body, it is readily
determined with ample accuracy. On the other hand, in
the equation for 7, the coefficient I is so strongly singular
that it was found necessary to replace simple step-by-step
integration by the more laborious five-term procedure of
Milne (ref. 29, p. 142). The coefficients and boundary
values are also considerably more difficult to calculate, so
the integration of j has been limited to three values of the
similarity parameter, whereas % has been found for four
values.

The accuracy of the solution for 7 suffers from the facts
that it depends upon the accuracy of the preceding solution
for g, that one coefficient in the differential equation is
strongly singular, and that the results of physical interest
are found as differences of nearly equal quantities. Con-
sequently, although results derived from the functions f,
g, and h are probably reliable to three or four significant
figures, those derived from j are perhaps not reliable to more
than two. -

Body shape and pressure distribution.—The parameters
m and 7, which relate the shape of the shock wave to that of
the body, are found, by requiring the stream function to
vanish at the surface, to be given by

b

m__.
&n

1 1
’n=<§fb”—§lgbl’—'—
The surface pressure coefficient is given by

e [ <¢F> _1] @

Thus it is found that on the surface of a body described in
actual coordinates by

r=Ro'z+%R.,":cﬂ+%Ro"'m3+L . (78)

(76)

the pressure coefficient is given by

U 0 U4 7
o= (i) +RIRS sis | +

1 ’ b’C’ TR TP
E{Ro,’l QN Ry 2)? :|+R0R° I:D(Ro 'z)O(Ro'''z) }z’-l— N
(79a,
where *)
Co _ofon(f\__ 1 .
W—2 [‘zﬁ(b) 'Y(MRo’)’:I
Yoo [T —&b
b(Ro'Ro ) b >< ')
2°C, _ 27w fb (
dRy2)o(Ry"2) 3 b
0, £V (1=1es” % h°>
stedg—2r() (T a2 ).

(79b)

181t corresponds to a pointed body with zero initial curvature; compare reference 24,
part XTI,
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Numerical values of k(b), 2’ (), 7(b), and 7/(b) are listed in
the following table, together with the resulting values of the
parameters ;n and » which relate the shape of the shock wave
to that of the body, and the two funetions which give the
initial curvature of the surface pressure distribution. The
two pressure-curvature functions are plotted in figures 14
and 15. (Curves have been faired through the three calcu-
lated points by analogy with the results of the cone-expan-
sion approximation discussed in the following section.)®®

, ¢, »C,
pre | 3®) | ¥®) 1O | r® | w | 5 |53 | s s
0.3765 114.34 1-36.40 0.005L 5694
6599 | 1762 | —5.401 [—7.34| 437 | .0s03 | 0583 4.04 4.738
L150 | .9341] —3.665| 194 | &30 .2867 | .868 520 4561
» |vr1e8} —69018| 7.63 {—27.4 | .8031 |—.901 | 137 5332
15
10
92C,
oRx)2
Small disturbance ‘theory——_1_
5 //
9333 .5 1 ©
o BRS
Figure 14.—First term in initial pressure curvature on ogive of
revolution.

FURTHER APPROXIMATIONS

The theory discussed heretofore is the simplest which
retains all the essential features of hypersonic flow, so that
its solutions approach exactness as the thickness tends
toward zero. Further approximations, although desirable
for facilitating solution, will introduce errors whose nature
may be more obscure. In the case of plane flow, however,
further approximations exist which are so simple and accurate
that the problem may be considered solved for practical pur-
poses (cases (5) and (6) below). These and other approxima-
tions will now be considered for three-dimensional shapes, in
comparison with the solutions already given.

Most of these approximations are useful outside the limits
of hypersonic small-disturbance theory. However, we shall

13 This three-term serles approximation was used to calculate the pressures over circular-
aro ogives for a similarity parameter of 1. The results were compared (ref. 30) with the
method of characteristics solutfons (ref. 31) and shown to be in good agreement over most of

the ogive. (Note that in Figure 7 of reference 30 the ordinate should be labslled C,/Bo’i
rather than C,.)
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6
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%353 .5 , [ o
BR,
Figure 15.—Second term in initial pressure curvature on oglve of

revolution.

consider them here only as they are reduced to small-disturb-
ance form, so that they actually represent approximations
beyond those already made. For example, the well-known
shock-expansion method will be considered only in its hyper-
sonic small-disturbance form. (ref. 17).

The following additional approximations will be considered:

(1) Linearized theory, second-order theory, etc.

(2) Newtonian impact theory

(3) Newtonian theory plus centrifugal forces

@ y=1

(5) Cone-expansion approximation

(6) Tangent-cone approximation

(7) Compression-layer approximation

Linearized theory, etc.—The breakdown of linearized
theory serves almost as & definition of hypersonic flow.
Hence, the most that cen be expected of linesrized theory,
second-order theory, etc., is that they penetrate somewhat
into the lower end of the hypersonic range.

For plane flow Donov (ref. 32, pp. 90—91) has determined
the fourth-order solution. Reduced to hypersonic small-
disturbance form, his result for surface pressure coefficient
on & single airfoil may be written ag

Mﬁop=2K+ﬁ’1 K’+7+1 o OFD (37—5) Kot

3+27v—* K*L3 ’Y—3’Y +78

18 = Ko+
3—7v 9;17 +37 BoK +(7+1)12(§7 8 g T

(80)

where K is the local similarity parameter (3 times local sur-
face slope), Ko its value at the leading edge, and Ky its
initial rate of change. Even in this reduced form nothing is
known of the range of convergence of the series or, indeed,
whether it converges at all. However, for a single wedge the
solution is known in closed form from equation (34). Hence,

~
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it is seen that in this special case the series is convergent for
KeaMs<4/(y+1), which is 1.67 for air.

For cones the linearized and second-order solutions (ref.
33, p. 11), as reduced to hypersonic small-disturbance form,
are shown in figure 16.

4=

Hypersonic small~
disturbance theory

S

Newtonian

8= ton™' g7

(o]

333 .5 1 @®
BR,

Figuore 16.—Further approximations to hypersonic small-disturbance

* theory; pressure on cone, y=1.406.

Newtonian impact theory.—Assuming that fluid particles
lose their normal momentum on impact with the surface
leads to a prediction of pressures proportional to the square
of the sine of the angle of inclination or, in the small-disturb-
ance approximation

g—;’,=2 (81)

wherever the slope is positive, and zero elsewhere. Accord-
ing to equation (34) the actual value for a wedge falls only to
2.4 at infinite Mach number (with y=7/5), so that the ap-
proximation is poor for plane flow. It is more satisfactory
for fusiform shapes such 2s a cone (figure 16), for which the
actusl value at M= » (with y=7/5) is 2.09.

Newtonian plus centrifugal forces.—Newtonian impact
theory has been improved by including the centrifugal pres-
sure gradient through the layer of fluid streaming over the
body (refs. 34 and 35). The result is precisely the limit of
the full theory as AM— « and y—1. In the small-disturbance
approximation (ref. 33), it gives for plane flow

C,=2(R"*+RR’"") (82)
and for axially symmetric flow

C,=2R"*+RR" (83)
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In both cases it is to be understood that negative values are
to be replaced by zero. Figure 17 shows that the improve-
ment due to including centrifugal effects is appreciable for
the initial pressure gradient on an ogive of revolution.

8
\\
\\ /-Tangent-cone
~ 7
N SR
~
\ \\
6 > s,
. ~ Newtonian+ ¢
Cone-expansnon>\ < \\\ centrifugal;r/
\ AN g
N 4
~ . ‘s
A N T/
_QTCP_,. Hypersonic small- P \ - /
HMR%) | -gisturbance theory4—" — R ~o
\\_
4 Y
Newtonian>
2
0.333 5 I o]

B8R,

Figure 17.—Further approximations to hypersonic small-disturbance
theory; initial pressure gradient on ogive of revolution, y=1.405.

y=1.—TIt has just been seefi that on fusiform shapes near
M= , the surface pressure is insensitive to the value of «.
At the other end of the hypersonic range, linearized theory
isindependent of y. These two extremes suggest that a close
approximation throughout the hypersonic range may be
found by setting y=1 (and this is particularly true since in
a real gas y approaches 1 at high temperatures). This choice
simplifies the theory by rendering it effectively isentropic;
that is, although shock waves produce entropy jumps,
entropy does not appesr in the pressure-density relation and
is therefore abhsent from the problem.

This approximation has been tested by computing the
hypersonic small-disturbance solution for a cone with y=1.
The results corresponding to those tabulated on page 11 are
shown in the following table (including the known value
at M= ). :

Mr 8/ g /b Cpy /&

1. 04 0. 3912 0. 4069 1 2556 3. 076

1. 15 . 5609 . 6450 1. 546 2. 627

1. 50 . 7647 1. 147 2. 498 2,277
® 1 © @ 2
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Figure 16 shows close agreement with the results for y==1.405,
the discrepancy being, indeed, less than that due to the
thickness of a 10° semivertex angle (cf. figure 11).

“Cone-expansion’’ approximation.—The shock-expan-
sion. method for plane flow, which neglects disturbances
reflected from the bow wave, has recently been shown to
yield good accuracy at all supersonic speeds away from the
transonic zone (ref. 36).

A more surprising discovery is that an analogous procedure
yields a reasonable approximation for certain three-dimen-
sional shapes in hypersonic flow. In this “cone-expansion’
method the flow behind the tip of & pointed body is approxi-
mated by a Prandtl-Meyer expansion (refs. 37 and 38).
The accuracy of this approximation is indicated by the
comparison shown in figure 17 for the initial pressure gradient
on an ogive of revolution.

Tangent-cone approximation.—Newtonian impact theory
predicts pressures depending only upon the local slope.
This suggests approximating the pressure at each point of
a body by that on 2 locally tangent cone or wedge at the
same Mach number. For. plane flow this gives equation
(85), which yields good accuracy. For bodies of revolution,
figure 17 gives an indication of the accuracy obtainable.

Compression-layer approximation.—In the upper end of
the hypersonic range the bow shock lies close to the body
(if the body slope is positive). This suggests making an

REPORT 1194—NATIONAL ADVISORY COMMITTEE FOR AERONATUTICS

approximation somewhat analogous to that of the Prandtl
boundary-layer theory, assuming that the layer of com-
pressed fluid between the body and shock is very thin,

For example, assume that the shock wave lies so close
to a circular cone that a linear variation is adequate to
describe the stream function. Then according to equation
(51) the stream function is given by

FO=3— 7t 19 89

Requiring this to vanish at the surface gives as the ratio
of cone angle to shock-wave angle

5 (r+3)x—2 .
b 7 2(v+Dxf (86)

This result has been derived by Lees (ref. 39). At infinite
Mach number with y=1.405 it gives 0.916 compared with
the true value of 0.914, and Lees shows that it is accurate
even in the lower end of the hypersonic range. However,
for the corresponding surface pressure’ coefficient, the range
of good approximation is much smaller, as shown in

figure 16.

AnEs AERONAUTICAL LABORATORY
NationaL Apvisory COMMITTEE FOR ABRONAUTIOS
Morrerr Frenp, Cavurr., Mar. 18, 1954



APPENDIX A

PRINCIPAL SYMBOLS

A, B, C, D, E,\ coefficients of differential equations (See

F,G HI egs. (58) and (73).)

B(z, v, 2) function defining body shape

b(x) reduced radius (or ordinate) of axially
symmetric (or plane) body

b, ¢, d coefficients in series expansion for radius
(or ordinate) of body (See eqs. (36) and
(67).)

o, pressure coefficient, (f);p.az

5 patla’
5 gk functions in series expansion for stream

function (See egs. (39) and (72).)
l initial ratio of shock-wave curvature to
body curvature

m,n coefficients relating shapes
of shock wave and body (See eq. (68).)
M free-stream Mach number
P pressure
B(2) radius (or ordinate) of axially symmetrie

(or plane) ogive
r radius (or ordinate) in cylindrical (or plane
Cartesian) coordinates

S(z, 9, 2) function defining shape of system of shock
waves

8(z) radius (or ordinate) of shock wave attached
to axielly symmetric (or plane) body

t time

U, v, W velocity components in Cartesian or cylin-
drical coordinates

z, Y, Cartesian coordinates with z in streamwise
direction

g M—1

¥ adiabatic exponent

E) semivertex angle of wedge or cone

. (Gl

b

] conical variable, =

k() auxiliary hypersonic similarity parameter
based upon local slope of shock wave,
Mrs' (z)

\ I-_-_‘ﬂ fa""‘"]‘l

KOZ b(’1+l)

b(—g5")

14 o
22w (bf)*R

g 37 _ng'

p density

o constant which is zero for plane ﬂow, unity
for axially symmetric flow

T : thickness parameter of body; in examples,

) initial slope of shock wave :

¥ stream function for plane or axially sym-
metric flow (See eq. (23).)

w entropy function (See eq. (25).)

wg, 1, @3 terms in series expansion for o (See egs.
(40) and (70).)

[1 denote jump in quantity through shock
wave .

(@) reduced form (See eqgs. (8).)

) form associated with strained coordinates.

’ (See eqs. (69) and (71).)

() derivative with respect to argument

( Do value at tip of pointed body

(e value at surface of body (or at 6, 0=b)

(s value at shock wave

Da value in free stream

APPENDIX B

CONNECTION BETWEEN HYPERSONIC AND LINEARIZED
SUPERSONIC SIMILITUDE

The similitude for linearized supersonic flow is now well
understood, having been first correctly stated by Gdthert in
reference 15 (for the analogous case of linearized subsonic
flow). This similarity rule implies that the reduced coordi-
nates z, ¥, and z of equation (8a) may again be introduced,
and that then the reduced flow quantities,

1) ]

__l(u
=z U,

A=

2
I

- B1ls)

S
I
Q1=

agls e§|°

i m}w(f 1)
(——1

depend only on the reduced coordinates and the supersonic
similarity parameter 87.! The error in the theory and asso-
ciated similarity rule is 0(r/8), in general. It may be em-
phasized that here, s in all the similarity rules, the choice
of reduced variables is by no means unique; an unlimited
number of equivalent forms can be produced for example, by
multiplying each reduced variable by, or adding to it, any
constant multiple of powers of the similarity parameter.
The particular forms adopted bere were chosen to correspond

(B1b)

1 Here, in contrast with the hypersonis case, the reduced varlables G and $ are definitely
not 0(1) as 0 (for fixed AL).

903
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as closely as possible to their hypersonic counterparts in
equation (8b), so as to facilitate the following argument.
For Mach numbers so lerge that MM is effectively equal to 8,
these results agree with those for the hypersonic case,? and
this was pointed out by Tsien (ref. 5). However, it is more
fruitful to reverse the argument, snd observe that the hyper-
sonic similitude, just as it stands, is entirely consistent with
the linearized similitude. This is immediately apparent for
the reduced velocities %, v, and w which (as implied by the
common notation) have identical forms in the two cases.
They differ only in depending upon different parameters,
but in hypersonic flow A4 and B are interchangeable to within
the accuracy 0(r%) of the theory, so that M+ can be replaced
by 8+ to complete the correspondence. For the pressure
and density, the hypersonic theory (eq. (8b)) shows that

'Yll}’# (p_z:,f_l>=1_' _1—1\%13
B

Again utilizing the fact that M and B are interchangeable in
the hypersonic range, these can be rewritten

m}*f’ (;?, 1>=§ 'yﬁl’r’_
L)

where the final forms depend upon the parameter 8r and are
therefore (as implied by the notation) identical with their
linearized counterparts in equation. (21b). Thus the cor-
respondence is complete.

This means that the hypersonic small-disturbance theory,
when properly interpreted according to the linearized super-
sonic similitude, yields a first-order solution at all speeds
above the transonic zone. The reduced problem of equa-
tions (10) to (13) is solved for & given value of the parameter
Mz, and then with M7 replaced by 87 is interpreted in terms
of physical variables according to

(B2a)

3l

(B2b)

U=u, [1+7% &,7,2; B7)] A
V=470

W=, TW

P=Pa |:1+7M’f2 (5_%})]:% (’er 5 _% (B3)

Y

o
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